What is a Biochemical Engineer?

A biochemical engineer is someone who is responsible for the development of new chemical products that can be used by a multitude of companies and individuals. Their job includes researching, developing, documenting, and producing products that are derived from a combination of organic and lab-made materials that can benefit people and society at large.

These products stretch across every aspect of society. Items created can be agricultural chemicals used to treat and develop foods for public consumption. They can be petroleum-based products, such as oils, plastics, paints, or other resins. They can be fibrous products, such as papers or textiles. They can be cleaning products such as detergents and soaps, or perfumes and cosmetics. Indeed, most of the products that people come into contact with on an everyday basis are developed through the biochemical engineering process.

What does a Biochemical Engineer do?

Each day, the engineer juggles several important duties. First and foremost is design work. They must conduct studies on cells, proteins, viruses, or other biological substances to determine optimal conditions for growth or inhibitors that can stop or kill. They must develop and conduct experiments to observe interactions of raw materials with each other and in specific environments. Lastly, they must develop processes for building new compounds from these materials that can be mass-produced for the general public’s use.

Biochemical engineers develop and conduct experiments to observe interactions of raw materials with each other and in specific environments.

In addition to design work, the biochemical engineer will need to work with others in process and product development. They will need to work with research personnel and manufacturing personnel to prepare information about products that are developed – safety sheets, manuals, and operating procedures and directions. They also need to work with fellow chemists and biologists to develop new technologies and products so as to continue innovation.

Lastly, they must be responsible for documenting their work and their results. Biochemical engineers must make sure that the results of any research and experiments and collaborations are properly captured and documented. Continued experiments help to determine what does and does not work with various materials, and reviewing past results can enable engineers to determine new methods to attempt in the future. Ideally, they will keep databases that house report data from past experiments.

In addition to maintaining data repositories that allow for analysis of the various compounds worked with and the resultant effects, engineers can use previous data to outline possible future models. They can alter certain variables – quantity of ingredients, exposure to different temperatures and environments, order of ingredient addition – and simulate the potential results on computers to determine if there is adequate compound development. If the engineer can see adequate progress in a computer simulation, they can then proceed with a live experiment, simulating the same conditions, to see if the theories hold well in practical application.

Are you suited to be a biochemical engineer?

Biochemical engineers have distinct personalities. They tend to be investigative individuals, which means they’re intellectual, introspective, and inquisitive. They are curious, methodical, rational, analytical, and logical. Some of them are also realistic, meaning they’re independent, stable, persistent, genuine, practical, and thrifty.

Does this sound like you? Take our free career test to find out if becoming a biochemical engineer is right for you.

Take the free test now Learn more

What is the workplace of a Biochemical Engineer like?

Upon being hired, recent graduates will usually work with experienced biochemical engineers and will receive formal seminar training from their new employer. As a new engineer is able to gain experience, they will be assigned more complex projects to develop new designs, solve complex problems, and make decisions that are in line with a department’s, agency’s, or company’s overall goals and objectives.

The most common everyday work environment for the entry-level employee in this field is a laboratory or manufacturing plant floor. Often, the engineer is working with hazardous chemicals or materials that require extra care and attention to ensure a safe work environment and safely developed products. However, in some senior positions, the office can more resemble a white-collar office environment.

Biochemical Engineers are also known as:
Biochemical Process Engineer Biochemical Research Engineer